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A Short Story on Mortgage Payments and Interest Rates
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The Housing Crisis

What caused pavments to go up?

Adjustable-rate

In the early-2000s, mortgages are
manvy pecple took out attractive because the
loans to buv houses. interest rate starts out

very low.

Many people buying In the mid-2000s,
houses had pavments
based on a low interest
rate that was subjectto
change.

Interestrates rose,
causing house
pavments 1o rise.

T

Many people could not
afford therising

pavments, and their
houses were
foreclosed.




House Payment Calculation

How are house pavments calculated?

Ahome-owner will
Suppose [ buva house typically pavback the
for $100.000. loan over 30 vears, in

monthly pavments.

I expect each payment The actual payment at

would equal: an interestrate of 3%
$100.000 ($421.60)jumped
m}mm=T'u about $150 when the
interest rate rose to
=$27778 6%,

Though I don't know
how interest rates

work, thev obviously
play a kevrole in all
this!




Interest Rates

What are they and how do they work?

Suppose Iinvest $100 Let's assume at the end
in the stock market, of a year, my $100
hoping to make investment is now

money. worth $103.

Abank chooses
between loaning me
money and investing

the monev somewhere
else.

I've earned 3% on my
initial investment.

The bank chargesme

"interest” as their lost
investment.




Rates of Return
Looking at Just the First Year

Right End of

Now Yearl
learn 3% ‘

during the year.

$100 becomes s103

Another way to write this is:
(starting money)(1 + i) = ending money
(100)(1+.03) = 103

What if | earned 3% on the money in the
second year? How much would I have?



Interest Rates
Looking at the Second Year

Right End of End of

Now Year 1 Year2

$100 5103 $106.09
multiply by (1 +1) multiply by (1 +1)

Into the FUTURE and Into the PAST

Right End of Right End of
Now Yearl Now Yearl
5100 5103 5100 §103
if then
__________ > ———— == — =
Going into the future, 1 Going into the past. |
multiply bv (1 +1) divideby (1 +1)



House Payments
How Does This Help Me With House Payments?

Let’s start with a simple example: you make 3
payments of $1,000 at the end of each year, with an
interest rate of 3%. Let’s diagram this:

right now 1 2 3
LOAN 1000 1000 1000
Thef’:;lue The present value of all of these
ofthe =
LOAN payments.

divide by divide by divide by
1.03 1.03* 103

T




Actually doing the calculation, | have:
1000 N 1000 1000

LOAN = o —
1.03 1.03 1.03

=970.87+942.60+915.14

=2828.61

Therefore: a loan of $2,828.61 at 3% is equal
to three payments of $1,000 each.

THE TIMELINE

IS THE KEY
The key is to bring all payments back to the loan
period. BUT YOU ACTUALLY HAVE TO
DRAW THE TIMELINE!



A Sample Calculation

And some easier notation

Present
1 give you a loan of The _ Valueof
2.828.61. LOAN All Future

Payments

It's tedious to have these

You pay me three in the equation:

payments of §1000
each, atthe end ofthe 1\
1st, 2nd, and 3rd vears. [_ |

1+i)

T

Substitute this to make
the calculation easier:

,n_[ 1Y
Ve 1+i)

10




The Home Loan and My Payments

The Two are Equal!

nght
now 1 2 3 339 360
| | | | |
| | | | |
LOAN P P P P P
A v v 1{" L Ve
The value
ofthe — The present value of all of these
LOAN pavments.

LOAN =PV + Pvi + Py’ +-..PvP + py™®

The previous example of three $1,000
payments required only three calculations. Above
is 360 calculations! There must be an easier way!
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A Finite Geometric Sequence

Finding the Sum of Many Terms

I've got a finite
sequence of 360 terms,
each with common
ratio . so it's a finite

Idon'tknow the
formula for the sum of
a finite geometric

. sequence.
ZE0mellc sequence. 1

Iwill rv a simple
example where I know
the answer to make
sure the formulais

right.

I'm left adding 360
terms on my
calculator, something [
don't look forward to!

T

I can use this new

formula to apply to my
sequence of 360 terms.
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A Finite Geometric Sequence

Finding the Sum of a Lot of Terms
S=1+2+4+8+16

What happens if I double everything? I’ve
doubled everything, because the ratio between each

term is ‘2°. The two equations are:

285=2+4+8+16+ 32
S=1+2+4+ 8+16

Why did | do this? Because | can subtract one
equation from the other, and most of the terms
disappear:
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IS=2+4+8+16+ 32 I subtract one entire
formula from the other.

S=1+2+4+ 8+16

28-8=32-1

Remember | don’t care about “32 — 1”. I'm
really searching for the general formula for the
sum of a finite geometric sequence.
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A General Formula

Finite Geometric Sequence

I multiplied my initial If mv sequence had
equation by '2' because been1+3+9+27.1
a lot of figures would would have multiplied

cancel. by '3

The denominator is 32" is the NEXT term
really -1 (if there was one) in the
where ris the common original sequence, and
ratio between terms. "' is the FIRST term.
The general formula forthe

sum of a finite geometric
sequence is:

S next term— first term
r—1
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1+3+9+27

A Finite Geometric Sequence Problem

just add them together:

use the formula for finding the sum of this finite geometric sequence

5= next term — first tevm
r=1
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1+5+25

A Finite Geometric Sequence Problem

just add them together:

use the formula for finding the sum of this finite geometric sequence

5= next term — first tevm
r=1
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PUTTING IT ALL TOGETHER
Now, I’'m ready to answer my initial question,
which was “find P”:

LOAN = Pyl + Pv? 4+ PV +--- PV ¥ 4 py@®

_ next term — first term

LOAN=Py(1+ +---+V% 4/%)  § =

f r‘f?_l\
LOAN=Pv| |
L ov-1 )
f 3
roan| 21|
|kv[lv“ _l.U
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ALMOST THERE

But wait! The interest rate is an annual rate,
but the payments are monthly. Let’s fix that:

The interest rate

The house payvments e
pas (3%) is on an annual

are made monthly.

basis.
T
To be useful, I must
divide the annual
interest rate by 12: 1
3%/ 12=0.25% "'zm
\\-“/'
L 1
1+.0025
=0.9975062
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And, applying the specifics of my loan
($100,000 first time home-owner) with the above
annual interest rate (3%) and discount factor v,
gives me my monthly payment of $421.60.

Loan = 100,000 I : ~
|“v[_v‘ _I.U
- n
100000 9750621 |
9975062 [ 99750627 — 1_]

|

421.60=P

And there it is!
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THE GEOMETRIC MIND

PROBLEMS

The following three problems each have a CHECK
(to make sure you’ve done the problem right).

Once you’ve confirmed you’ve done the problem
right, there’s a KEY. The key is necessary to
unlock the next installment.

Kevl Key2 Kev3
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PROBLEM 1
I borrowed some money with the condition | would
pay it back in 4 monthly installments of $150.
Fortunately, there was no interest rate. How much
did I borrow?

Keyl Check
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PROBLEM 2
Interest rates rose from 3% to 6% in the example
earlier in the booklet. How much did the monthly
payment rise?

6% Payment

3% Payment 4 2 1 . o 0
7
Check Key2
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PROBLEM 3
My home payment at 3% for 30 years was $421.60
for a $100,000 loan. I realize I can really afford to
pay $500. How much can | borrow, still at 3%?

=0
Key3 Check Check
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THE GEOMETRIC MIND

CONCEPT CARD

Finite Geometric Sequence
Forget the formula — write the two questions out

and derive it ... every time.

Loans, Present VValues, etc.
Always — always — draw the timeline and the
arrows back to “now”’.

1

—_—
L
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